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In a number of astrophysical systems, the magnetic field, instead of varying over a scale comparable with the
“natural” scale of the objecte.g., tens of thousands of kilometers in the case of the solar convectivg zone
varies over lengths that are orders of magnitude less thaxetlgjs over distances down to 100 km in the case
of the magnetic filaments detected in the upper part of the solar convective zone and probably present in much
deeper layeps Therefore, the study of the propagation of magnetohydrodyn@khitD) waves in plasmas
with fine magnetic nonuniformities is of considerable general importance for astrophysics. We have developed
a general formalism that allows one to treat the propagation of large-scale MHD waves in a finely stratified
medium. We demonstrate that the presence of a fine structure of the plasma may produce considerable modi-
fications of the modes existing in a uniform plasma, with a number of propagation modes that may even
increase. We also show that the slow MHD mode may experience a collisionless damping, which causes the
wave energy to be converted into the energy of the peristaltic modes of the plasma “resonant” layers.

PACS numbgs): 52.35.Bj, 52.35.Fp, 95.30.Qd

I. INTRODUCTION number of paper$3—7]. In Refs.[3,4], the propagation of
sound waves in a plasma with thin flux tubes was considered.
In a number of astrophysical objects, the magnetic fieldThe distance between adjacent flux tubes was assumed to be
instead of varying at a scale comparable with the “natural” much greater than the typical flux-tube raditismall filling
scale of the objecte.g., tens of thousands of kilometers in factor”). The analysis was based on averaging of the dy-
the case of the solar convective zgnearies at scales that namic equations. In Ref5] a multiple scattering technique
are orders of magnitude less than this “natural” sc@ey., was used to assess the sound propagation in a plasma with
at a scale down to 100 km in the case of magnetic flament8ux tubes all having the same parameters. These papers were
detected in the upper part of the solar convective Zdje based on the assumption of small filling factor.
and probably present in much deeper layetherefore, the In Ref.[6], the dispersion properties of waves were stud-
study of the propagation of magnetohydrodynarfHD) ied in the “densely packedlarge filling factoy case, where
waves in plasmas with fine magnetic nonuniformities is ofthe size of the nonuniformities is comparable with the dis-
considerable general importance for astrophysics. tance between them. To make the problem tractable, it was
The propagation of waves with a wavelengtitonsider- assumed that the relative variation of the plasma parameters
ably exceeding the scale lengilof the nonuniformities is a is small compared to their average value[Th which is the
difficult theoretical problenihere we mean the situation in closest predecessor of our paper, the dispersion of one-
general: not only MHD waves but also waves in objects likedimensional(1D) perturbations propagating across a finely
bubbly liquids, polycrystals, the turbulent atmosphere,) etc. stratified magnetic fieldmagnetosonic waveésvas studied.
Intuitively, it is tempting to say that the averagever a scale We will give some further references to this paper in the
greater than the scale of nonuniformifi@sotion in the wave appropriate parts of our study. Referen¢é$ and[7] also
remains qualitatively the same as in the uniform mediumgontain evaluations of the damping rate.
with the only difference that dispersion properties are now In this paper, we generalize the analysis of Ré&f. to
determined by some averaged characteristics of the mediurmclude waves propagating at an arbitrary angle to the mag-
In part this is trug(an acoustic wave in water with fine gas netic field. As it turns out, this generalization is far from
bubbles still remains an acoustic wave, although its dispertrivial: in contrast to the 1D case, where a magnetoacoustic
sion may change consideraplybut identification of the wave in a finely structured medium maintains its identity and
proper averaging procedure may be far from obvious. In adremains basically the same magnetoacustic wave but with
dition, as we show in the present paper, there may also occtine phase velocity determined by the averaged parameters of
a considerable modification of the modes existing in the unithe medium, in our case identification of the modes with the
form system, and the number of modes may increase. modes of a uniform mediurfAlfvén and magnetoacoustic
Moreover, the presence of the fine structures may alsbecomes impossible and, in addition, the number of eigen-
considerably increase the damping rate of long-wavelengtimodes may increase. Of course, the model of a stratified
perturbations. A good exposition of the physics of enhancednedium does not fully simulate the reality of structured
dissipation can be found in the tg2], where this problem is fields, but it allows one to understand some features of such
considered for acoustic waves in polycrystals. systems. The problem that we solve analytically in this paper
In the past, the problem of MHD waves propagating in amay also become a test problem in developing computer
plasma with fine nonuniformities has been considered in @odes addressing more general situations.
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In Sec. Il, the geometry of the problem is described and Sp=—(&V)po—poV- &, (6)
the basic equations are derived. In Sec. Ill, an averaging
procedure over the small scadss introduced, and the “av- op Sp Vép Vép
erage” equations are presented. The distribution function of E_ YEJF W_ 77) =0, (7)

the plasma inhomogeneities is introduced in Sec. IV, and the
possibility of getting a “new” root of the dispersion relation where £ is a (smal) displacement of the fluid element with
for MHD waves is demonstrated in Sec. V. The appearancgespect to its unperturbed position, and the other perturba-
of a collisionless damping of the slow MHD mode of the tjons are marked by the symbal As is clear from this set of
homogeneous case, induced by the small-scale structure, dguations, we neglect all the dissipative processes.

shown in Sec. VI. Some general properties of the dispersion 'As the system is uniform in the direction, one can pos-
equation for long waves in finely structured plasmas are disylate an harmonic dependence of all the quantities on that
cussed in Sec. VII. Finally, Sec. VIl is devoted to conclud- coordinate. Accordingly, we assume that fréependence of

ing remarks. the perturbations has the form eiqd), with realq. Note that
we assume that there is galependence of the perturbations.

Il. THE GEOMETRY OF THE SYSTEM AND THE BASIC For this type of perturbation, thecomponent of the dis-

EQUATIONS placement does not enter E¢6) and (7). As for they com-

We assume that the unperturbed parameters of the systef%c,mems of Egsl4) and (5), they reduce to
the plasma density,, the plasma pressupg, and the mag- iqB,
netic field By, depend only on the coordinaxe The unper- —wzpo§y=ﬁ oBy, (8)
turbed magnetic field is directed along the axi§he unper-
turbed total pressure 5B, =i0Bot, . 9)
BS

1) One sees that perturbations with this polarization are split
from the perturbations witlf, =0. Equationg8) and(9) de-
scribe the shear Alfuewaves propagating along tlzeaxis.

is uniform, 9P /9x=0. The dispersion relation for this mode is
The functionspg(Xx), po(X), andBy(x) are some random

functions of their argumenfsubject to the constraint that
Po=const). As two independent functions one can use the
functionspy(x) andBy(x), or some functions of these vari-
ables. With regard to possible functional dependencies ofs the Alfven velocity, generally speaking, depends xn
po(X) andBy(x), we assume that these functions vary by thegq. (10) describes the so-called Affaecontinuum(see, e.g.,
order of unity with respect to their average values, and thaRef. [8]). We will not discuss this mode in our paper. We
their spatial dependence can be adequately characterized byi@t recall that the presence of such solutions is a conse-
single parameter having the dimension of a length; this quence of the fact that shear Alfvevaves have a zero group
parameter plays the role of the characteristic scale of thgelocity across the magnetic field and, accordingly, these

nonuniformities. The characteristic values of the gas-kinetinaveS in separate |ayers propagate ab50|ute|y independenﬂy
pressurepy(x) and the magnetic pressui3/8w are as-  of each other.

sumed to be of the same order of magnitude. This means that Consider now equations where tk@ndz components of

Po=po+ g

_ 9%Bg
Ampg

w2 (10

the local values of the sound speed the displacement and of the perturbation of the magnetic
field are present. After some algebra, these equations can be
Vo= [ YPo @) reduced to two equations faf, and for the total pressure
SN p, perturbationsP,
wherey is the specific heat raticand the Alfven speed BooB
(wherey P ‘ P 5P = op+ ——* (12)
41
[ Bo
Va= 47p, () These equations read
2p2
are also of the same order of magnitude. (w2 _a%Bo _9oP (12)
We consider small perturbations of this initial state. As it PO g | T Tox
is a stationary state, one can seek for the perturbations in the
form exp(—iwt). For such perturbations the standard set of Iy z YPo -t
linearized MHD equations reads as o Pz, T 1—Zypylwpg (13
1 1 ; i ; ;
— w2pot=—Vop— — ByX VX 6B— — 6BX VX By, These are our basic equations that we will analyze in Se_c. M.
A7 A For the sake of reference, we present here the expressions of

(4)  the other perturbations in terms &f:

SB=V X &X By, (5) 8B, =iqBosy, (14)
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J
6B,=— a_x(fxBO)v (15 3P

Ex a

iqypo 9 16

 YPod’— pow? X’ @N ' I L
oPo YPoPow? 9éx 17 N\N\l\ﬁ\‘\]

—— +
o=k X yPod®—pow” X’

op
L po pwt 9
5p——§xw+mg. (18) /\/\ /\/\/\/\/\/\/v\ /\A/\/\ /\/
A V/\V V/\V/\ \

Ill. THE AVERAGED EQUATIONS \/\/

&

Equations(12)—(18) are, so far, exact equations. At this
point we switch to the investigation of a particular class of
the perturbations they describe, namely, perturbations with & _ BEx
scale lengthk much greater than the scale lengthof mi- Bx c
crononuniformities,

A>a. (29 {\ A

M /\ A /\/
[T v
One can create such a perturbation by a very slow motion of

the boundary of the plasma, with a frequency much less thar
the characteristic acoustic frequency of each slab,

w<Vsla. (20 FIG. 1. Smoothly and sharply varying perturbations.

Alternatively, one can produce an initial perturbation by ap-yith

plying a smoothly varying X>a) external force, and then

removing it and allowing the system to evolve freely. Obvi- _ a _ a

ously, the perturbation of the total pressure in every slab then E~{&) X SP~(65P) X (23
remains almost uniform, as the perturbations under consider-
ation represent slow quasistatic modes. Therefore, we coRr
clude that the spatial dependence of the perturbation of th
total pressure is a smooth functionfsee Fig. 13)].

In contrast, the _perturbations of the gas-kinetic pressure a<|<\, (24)
and of the magnetic pressure, taken separately, can be con-
siderable[Fig. 1(b)], because of the different compressibili- gnd is defined as
ties of the gas and the magnetic field. Also sharply varying
will be ¢, and the density perturbations. All these quantities 1 (x+l2
adjust their variation in such a way as to keep the variation (f(x))= I_f 0 f(x")dx’. (29
of the total pressure smooth.

The other perturbation that must be a smooth function of, particular
xis &,. Indeed, ifé, varied by the order of unity at the scale '
a, then its spatial derivative entering E(L3) would be gsP\ 1
~ & /a, the perturbation of the total pressure, according to <W> = l—[(&P(x+I/2))—<5P(x—I/2)>]
Eq. (13), would be~Pyé,/a, and the right-hand sidehs)

he averaging is carried out over a lengitthat is interme-
Giate betweera and x,

X—

of Eq. (12) would be formally much greater than the Ihs, so 1 _
that Eq.(12) could not be satisfied. Therefore, we conclude + |—[5P(X+|/2)— oP(x—1/2)]
that &, is also a smooth function of.
To be more precise, one should say that, in the case of the H IP) a\ d(5P)
functions &, and 6P, in addition to the smoothly varying = Tox T~ "ox (26)

component there are also jiggles, but their amplitude is many
times Ies; than the amplitude of the smoothly varying com-he same result pertains to the averaging/éf/dx. Note
ponent[Fig. 1a)]: also that the functionsé,/dx and 96P/dx themselvegbe-
~ fore averagingare jittery functiongFig. 1(c)]. This is im-
&=(&0) T éx. (2)  mediately clear from Eq$12) and(13): these derivatives are
products of smoothly varying functions and jittery functions
SP=(6P)+ 6P, (22)  and, therefore, are jittery.
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Taking into account all these considerations, one can axhem are independent. In order to characterize uniquely the

erage Eqs(12) and(13). Replacing by virtue of Egs.(21)— initial state one can, therefore, use two of the aforementioned
(23)] &, in the Ihs of Eq.(12) by (£,), and 8P in the rhs of  variables, or two functions of these variables. We will char-
Eqg. (13) by (5P), one finds acterize the initial state by the values of the sound spEgqd
(2)] and the Alfvea velocity[Eq. (3)]. Then, for instance, the
) 5 B3 I SP) density in the unperturbed state can be presented as
WApoy =¥\ g2 ) |(E)=—5 0 @D
Po
&<§X> (wzlqz)_vg pO:U2/2+Uz/ . (34)
=—(6P) 5 22 72 (29 a 'Y
IX pol (0®/q J(vatuvg) —vavs

. - . . It is convenient to characterize the distribution of the non-
Since the coefficients in these equations do not depend OLTniformities of the unperturbed aramete&and 2 by the
X, one can look for a solution of the type eip{ with realk. P P Vs bY

oty it ; 2.2 : .
k plays the role of thex component of the wave number of distribution functionF(vg,vs) (cf. [3]) defined as follows:
the averaged perturbations. By introducing also the phase

velocity of this perturbation, da=F(v2,v2)dvidv?, (35

(1)2

V2=, (299 wherede is the fraction of space occupied by the plasma
k+q 2 2 g 24 2
whose parameters; andvg lie in the rangedv zdvs. The

and the angle? formed by the total wave number with the normalization of the distribution function is obvious:

axis z,

2 J F(v2v?)dvdvi=1. (36)

a (30

cog 9= el
Negative values of the parametersandv? are unphysi-

cal. Therefore distributions of the Gaussian type, which

would extend to the negative values of these parameters, are

> obviously unphysical too. The functidh should be nonzero

one finds the following dispersion relation that allows one to,
express in terms ofd:

<pov§>> (poy(v?—v5cos 9)
(po) po[vz(v§+v§)—co§ ﬁvgvg

=sir? 9. (3D

only in one quadrant of theg,vg space. We will make an
even stronger assumption thatis nonzero only in some
range of the parameterg andv? limited from both below
and above.

: 2 2
In the case of a uniform plasma, one can delete the aver- 1he averaggsee Eq(25)] of any functionf(vy,vs) can
aging signs and, in this way, arrive at the familiar dispersiorP® c_onv_enlently_exp.ressed in terms of averaging over the
relation describing fast and slow magnetosonic waves:  distribution functionF:

v2—cog ¥

4 2,..2 2 2.2 __
v4=v%(vi+vd)+cog Jvivi=0. (32
e s <f(u§,u§)>=f f(v2vY)F(w2vd)dvidv. (37
The other limiting case known from previous analygéls
is that of 9= /2 (strictly perpendicular propagatiprin this .
case, our dispersion relation is reduced to that of R&f. For example, for the average density one has
F(v5vd)

1 1 -1
v2= . 33 - 24,2
(Po) <po(v§+v§)> 33 (Po)=Po —hrva/ZJrvS/ydvadus. (39)

In other words, in the case of cross-field propagation, the _ ) .
magnetoacoustic wave remains a magnetoacoustic wave, jusgiS allows one to express the dispersion relation in(B).
with properly averaged phase velocity, but no new moded” terms of averages over the Q|str|but|on functfenNe will
appear. In the more general case of the dispersion relatighCt Write this lengthy expression here.

(31), as we will shortly show, the situation is much richer: Further simplifications occur in the case where the unper-

the number of modes, generally speaking, increases, and fHP€d temperature is uniforfthis is an interesting case be-
some cases a collisionless damping appears. cause the thermal diffusivity is usually much higher than the

magnetic diffusivity and may quickly establish a uniform
temperature over small scale§Vhat is important to us is
that, at a constant temperatut€, is constant, too, and the
initial state is uniquely characterized by a single varia@e

Within the framework of the MHD approximation, the Accordingly, we need the distribution function only over one
unperturbed state is characterized by three variaplgspg, parameterui. In this case the dispersion relation of Eg1)
and By. As there is the constrair®y=const, only two of reads

IV. THE DISTRIBUTION FUNCTION OF THE PLASMA
NONUNIFORMITIES
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(v2—0032 ﬁ%)(vz—vgco§ 9)
><<po[vz(vg-l—vgo—)COS2 dviv? >:Sin2 4, (39
where
(po)=Po f %dvi, (40)
(pova)=Po f %dvi, (41)

1
<p0[vz(v§-i-v§)—cos2 ﬁv§v§]>

- lf (v32+ vl y)F(v3)dvl
~ Po ) [vi(vit+vi)—cog dviwi]’

(42
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FIG. 2. lllustration of the two-value random functiarg(x).
The fraction of space “occupied” by the valueﬁl is aq, the
fraction of space occupied bygz is a,, andaq+ a,=1.

The possible presence of zeros in the denominator of the

integral in Eq.(42) requires a proper treatment of this inte-
gral in the spirit of the usual treatment of Landau resonances

[9]. That is, we first note that the integral in E¢2), if taken
along the real axis o2, is an analytical function at I

2 2

>0; this is the function that enters the inverse Laplace transit then becomes

form (with p=1Im w) [9]. For negative values of Ima, this

function should be defined as an analytical continuation of
the integral initially introduced. The role of the imaginary
part of the rhs of Eq(42) will be discussed in Secs. VI and

VII.

V. NEW ROOTS OF THE DISPERSION EQUATION
APPEAR

We will first analyze the dispersion E¢39) for a two-

step distribution function, where the relevant parameter mayhere

acquire only two values;2; andv2,, randomly distributed
over the spacésee Fig. 2 The distribution function in this

case is

F(v)=a,6(02—v2)+ a6(vi-0v3,), (43)

2 U 2 Va2
- 3 — . 46
0 2oy a2 (48
al(u§1/2+ 1/y)
G(u)=(Au’-B)(u*—1
(W =(AP=B) (W= 1)| =
ay(U2,12+ 1]y)
[u?(uz,+1)—us,]
=tar? 9, (47)
A= E I B= 2 ai—uii (48)
ST us/2+ 1y’ iU 2+ 1y

Before considering in more detail the case of two sub-

where a4 (a5) is the fraction of the space occupied by the stances, we briefly discuss the reference case of a uniform

first (the secongvalue of the parameterg, and
a;+a,=1. (44)
In this case the dispersion relation takes the form
(v%(po) —coS ¥(pov3)) (>~ v cos V)

al(v§1/2+ Uﬁ/ v)
X
[v(v51+vE) —cos dvsyvl]

2 .2
ar (v tusly)
[v2(v2,+v2)—cog Jv2w

| =Pgsir? 9.

S

(49)

It is convenient to rewrite Eq45) in terms of the following
dimensionless variables:

medium, wherex;=1 anda,= 0. In this case the functio®
is reduced to a simpler functiad that has the form

(u2—u2)(u-1)

2y —
H(u9)= u?(1+ui)—us

(49

A sketch of the functionH(u?) is shown in Fig. 3 forn
=n=3x10fcm™3, T=100eV, B=B;=10G, ui=u3,
~100, andB= B,~0.01. The intersection of the plot of the
functionH(u?) with the horizontal lineH (u?) =tarf 9 gives

the values of the parallel phase velocity. The smaller of the
roots

uz

1+uf

<u?<min(1,u?) (50)
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1~ —_— N TABLE |. Parameters for the two phases of a finely structured
I plasma.
Phasea=1 Phasex=2
< 0 n, (cm3) 2.3x101° 3x 10
T T, (eV) 100 100
B, (G) 3 10
uz, ~0.1 ~100
Ba ~10 ~0.01

2 ..2 2 2
us,u aqU aLu
al“a2 1Ya2 2Ya1

W2 = 2 Y 0
— .2 .2 2 2 2 2 .
T Uae 1 Un Ve (Ve Ua
2 @1 2 | T2 2
u’ (54

FIG. 3. The functiorH (u?) defined in Eq(49) is plotted vsu?,
for n=n;=3x10°cm ™3, T=100eV, B=B,=10G, uZ=u% As a specific example, let us consider the two sets of param-
~100, andB=3,~0.01. Its intersection with the horizontal line eters, shown in Table |, characterizing the tpllasesof the
H(u?) =tar & gives the two solutions of the dispersion E47) in  finely structured plasma under consideration. The total pres-
the case of a uniform plasma. Notice that the fast magnetoacoustigre P [see Eq(1)] and the temperatur® are assumed con-
root is situated at higli? values which are outside the range dis- stant throughout the medium.
played in the figure. Three cases are now considered, depending on the relative

concentration of the two phases of the plasmg= a5,
corresponds to the slow magnetoacoustic m@ee, for ex- =0.5[case(@)]; @;=0.1,a,=0.9(b); @;=0.9, 2,=0.1(c).
ample, Ref[10]). Its characteristic feature is that, in the limit |n all cases;y= 2 has been considered. In Fig. 4 the function
99— /2, its parallel phase velocity becomes constant ands(u?) is plotted for the three caséa), (b), and(c). Again,
tends to the value the intersection with the horizontal line faf gives the three
roots. The fast mode, modified by the presence of small-scale
u2 inhomogeneity, is the larger root of the dispersion, i.e.,
2 (51)  max(1B/A). The smaller ou?=1 andu?=B/A represents
the modified slow magnetoacoustic mode. The rodt
=uﬁewis the new mode that can propagate inside the plasma
The larger of the roots due to its composite structure. Figure 5 shows the three roots
of the dispersion Eq47) versus the propagation ange(in
units of 77), for the three case®), (b), and(c).

Both the two smaller roots have the characteristic signa-
ture of slow magnetoacoustic waves: a constant parallel
corresponds to the fast magnetoacoustic niddg phase velocity ford— 7r/2. One can say that now there are

Consider now the case of two substances. Equafignis  two slow magnetoacoustic modes, instead of one as in the
a third-order equation in? [not a second-order equation as case of a uniform plasma. There exists also a fast mode, with
was the case in a uniform plasma; see 8@)]. This points  phase velocity exceeding max@glA).
out the possible presence of an additional mode. One can Notice that in the two opposite limiting cases—0 and
show that, indeed, this equation universally has three solua;—0 the new root disappears, since the uniform plasma
tions with positive(and thus physically meaningjulalues case should be recovered. In the former cagg, merges
of u? (unless we consider the degenerate case wﬁp into the larger asymptote. In the latter cagg,, merges into
=uZ,, which corresponds to the single-component system the lower asymptote. In both limitsi,e,, becomes indepen-

u?>max(1,u?) (52

Moreover, two asymptotes occur at dent of 9.
2
2 Yaz) 53
1+Usy ) VI. COLLISIONLESS DAMPING OF THE SLOW

MAGNETOACOUSTIC MODE

The presence of the three roots is a direct consequence of the A second relevant example that allows a simple solution
presence of the second component in the system. is that of an almost uniform medium, with nonuniformities
For parallel propagation, i.e., fa¥= 0, the three roots are occupying only a small fractior of the volume. In other
u?=1,u?=B/A, andu?=u?,, where the “new” mode has words, we assume that the distribution functiétw?) has

the following dispersion: the form
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(a)

1.5

025

{b)

G
<

-025 ¢

-0.5

0.5

(c)

FIG. 4. The functiorG(u?) defined in Eq(47) is plotted vsu?,
for three different values of the relative concentrations of the two
phases of the plasma;=a,=0.5 (a); a;=0.1, @,=0.9 (b); a;
=0.9,2,=0.1(c). The other parameter values are those of Table I.

6 8 10 12

F(v2)=(1—€)d(vi—v3o) + ef(v2),

25

1.5

u’cos’0

u’cos’0

u%cos?0

FIG. 5. The three roots of Eq47) are plotted as a function of
the propagation anglé (in units of 7r), for the same cases as in Fig.

3075

I S

where the functiorf(vﬁ) describes the presence of nonuni- 4: a;=a,=0.5 (a); alz_O.l, a2:0._9 (b); c_xl:o._g, a,=0.1 (c).
formities and is assumed to be normalized to the unity:The “new” slow mode is plotted with a thicker line.
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Jf(vd)dv2=1. When one substitutes the distribution func-whereu should be determined from the solution of the un-
tion of Eq. (55) into the general Eq(39), one finds the fol- perturbed dispersion relatidA(u?) =tar? 9.
lowing dispersion relation pertaining to the case under con- The fast magnetoacoustic wave remains undamped, be-
sideration: cause its parallel phase velocity is always greater thggeé

2 Eq. (52)]. Consider, therefore, the damping of slow magne-
(1~ €)(Uao/2+ 1/y) toacoustic waves. That this is a damping, not a growth, can
u?(uzp+1)—ugo easily be seen from inspection of the plottbfu?) in Fig. 3,
2, 2 5 and the notion that, for slow modes, the parallel phase ve-
+ Ef f(uaz)(u;/2+ 1/7)2d Ya —tarf 9.  (56) locity is always belowu, [see Eq.(50)].

u“(uz+1)—ug According to what has been said in Sec. IV, consider a
) ] distribution function that is different from zero in a finite
Here, as in Eqs46) and(47), all the variables are normal- interval, Uy min<Us<Uamax. The damping of a slow wave

ized to the sound spedéq. (2)]. Moreover, we recall that jith a certain phase velocity occurs if u falls into the
we are considering the constant temperature case so thgerval determined by the inequality

sound speed does not vary in thelirection.

(Au?—B)(u?>—1)

2 2

The terms of the order af bring about two modifications Ua, min <ui< Ua, max -1 (61)
to the solution of the uniform plasma case<(0): first, the 1+ U3 min 1+HU5 max

real part of the frequency experiences a small shift propor- . . _
tional toe; second, if there exists a range of phase velocitie\S an example we have considered the following parabolic
corresponding to the zeros of the denominator of the Landagistribution function of the plasma nonuniformities:

integral in Eq.(56), there appears also an imaginary correc- , 6(u2 U2 (U2—u2 ) . ,

tion to the frequency. The first modification is of little inter- f(uy) = — > —— H(U3 max—U3)

est and we do not consider it. The second modification intro- (U3, man— U3, min)

duces a qualitatively new element to the system— > H(ug— ug,min)' (62)

collisionless damping Accordingly, in what follows, we

retain only one term of the orderin Eq. (56): the imaginary  where the two Heaviside functions limit its definition to the

part of the Landau integral. In other words, we neglect thefinjte interval uZ ,,;,<U2<U3 ... The distribution is normal-

bracket of Eq(56), and arrive at the following approximate the angled (in units of ) is plotted for the case of the main

dispersion relation: plasma with parameters of the “phase 2” plasffaw ) of
H(u?)+igv=tarf 9, (57) Séac. V. The gange of existence of_ the distribution function is
U3 min=60, Uz 1a=200. The fraction of the volume occu-
where the functiorH is defined according to E¢49), with pied by the nonuniformities is=0.1. According to Eq(61)
uZ, replacingu?, and the imaginary part ofu? exists in the range 0.983u?

<0.995, as shown in Fig.(B), where Imu? is plotted vsu?.

— 5 f(u?)du?. (58  Thenthe phasg velocities which are.aff(—;-cteq by the collision-
a—u/(1—-u) less damping lie below the dashed line in Fi¢a)6lt is seen

. , . that the collisionless damping of the slow mode becomes
To be specific, consider a wave wikh andzRem positive. In  effective for propagation sufficiently obligue to the direction
this case, for positive I, one has Inu®>0. This deter- ¢ the external magnetic fielthe z axis). It is consistent
mines the rule for treating the Landau integral in B88).  ith the nature of damping that lies in the resonant interac-
The integration contour in the complex planeudfshould lie  tion between the external waves and slow perturbations
part ofu? is small, one hagtaking account of the integration \ith a properu,. This damping mechanism is the same as

V=

u?—u?, J 1y+u2/2
>—=Im
y+ugy/2 cu

rule just mentioned that discussed in Ref4] (see also the survei1]).
1y+u2/2 s
|mJ szf(ua)dua VIl. GENERAL PROPERTIES OF THE DISPERSION
¢ *a RELATION (39)
1 uf u? In this secti ider th | dispersion E
_ fu2y| =4 e 5(u2_ )duz_ 59 n this section we consider the general dispersion Eq.
WJ (u3) y 2 a 1-y?" e (59 (39). When written in dimensionless quantitie$ and ui

) o . ) defined as in Eq(46), this dispersion relation reads

The last integration is carried out along the real axmimf ) o2
The rhs of Eq(59) is non-negative. It can be different from (AuZ—B)(u?— 1)j (ug/2+1ly)F(uz)dug
zero only foru?<1 (otherwise, the argument of th&func- uz(u§+ 1)—u§
tion cannot become zexo (63

The presence of a small imaginary term in Egj7) gives
rise to the appearance of a small imaginary par that can
be found from the relationship

2ul aH(UZ)— 60
uimu—-—=—e, (60)

=tar? 9.

The distribution function is normalized to 1. As before, we
assume thaF differs from zero only within a finite interval
of u2.

Equation (63) possesses an interesting property: it pre-
dicts the presence of undamped fast magnetoacoustic modes
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FIG. 6. The root of Eq(49) corresponding to the slow mode in
a uniform plasma is plotted v (a). The relevant imaginary part, of
collisionless origin, is plotted vai® (b), for uZ =60, U3 nax
=200, as discussed in Sec. VI.

with phase velocities satisfying the conditioru?
>max(1B/A). The parallel phase velocity of the fast mag-

netoacoustic mode is greater than the zero of the denomin

tor of the integrand in Eq(63—whence the absence of
damping. A simple asymptotic solution of E@3) exists for

LINEAR MAGNETOHYDRODYNAMIC WAVES IN A . ..

3077

The slow magnetoacoustic mode, generally speaking, expe-
riences a significant damping, with lur=Reu.

VIlIl. SUMMARY AND DISCUSSION

We have developed a general formalism that allows one
to treat the propagation of large-scale MHD waves in a finely
stratified medium. We have obtained equations that allow
one to gain some insight into the wave properties of a plasma
with a large filling factor, where nonuniformities are tightly
packed to each other.

On the one hand, our equations predict the occurrence of
new roots in addition to those of the uniform plasma case.
For the particular plasma nonuniformity distribution consid-
ered herg[corresponding to a two-phase plasma; see Eq.
(43)], a new slow wave exists in addition to the standard
slow and fast magnetoacoustic modes. The more compli-
cated, although more realistic, situation of a continuously
varying Alfven velocity inside the plasma, generally speak-
ing, involves zeros of trascendental functions which may
give rise to multiple solutions; it will be the matter of future
investigation.

On the other hand, it has been demonstrated that in this
latter case, for a small degree of nonuniformity, the standard
slow mode, generally speaking, experiences collisionless
damping: the wave energy is converted into energy of the
peristaltic modes of the resonant layers, i.e., the layers where
the phase velocity of the peristaltic modes coincides with the
parallel phase velocity of the wave. Generally speaking, the
damping of the slow mode is strong, with the imaginary and
real parts of the frequency being of the same order of mag-
nitude. A transparency window for slow modes may be
present in the system if the range of Alfveelocities where
the distribution function is different from zero does not en-
tirely overlap with the range of phase velocities of the slow
mode.

The fast mode is universally undamped, as its parallel

hase velocity is always above the phase velocity of the peri-
taltic modes.

Y9~ /2. In this case the parallel phase velocity of the fast

mode is very large, and E¢63) reduces to
uzf F(ud)du? (u§/2+1/y)|:(u§)du§:

P 9.
uz/2+1ly uz+1 tar 9

(64)
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