
PHYSICAL REVIEW E MARCH 2000VOLUME 61, NUMBER 3
Linear magnetohydrodynamic waves in a finely stratified plasma
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In a number of astrophysical systems, the magnetic field, instead of varying over a scale comparable with the
‘‘natural’’ scale of the object~e.g., tens of thousands of kilometers in the case of the solar convective zone!,
varies over lengths that are orders of magnitude less than this~e.g., over distances down to 100 km in the case
of the magnetic filaments detected in the upper part of the solar convective zone and probably present in much
deeper layers!. Therefore, the study of the propagation of magnetohydrodynamic~MHD! waves in plasmas
with fine magnetic nonuniformities is of considerable general importance for astrophysics. We have developed
a general formalism that allows one to treat the propagation of large-scale MHD waves in a finely stratified
medium. We demonstrate that the presence of a fine structure of the plasma may produce considerable modi-
fications of the modes existing in a uniform plasma, with a number of propagation modes that may even
increase. We also show that the slow MHD mode may experience a collisionless damping, which causes the
wave energy to be converted into the energy of the peristaltic modes of the plasma ‘‘resonant’’ layers.

PACS number~s!: 52.35.Bj, 52.35.Fp, 95.30.Qd
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I. INTRODUCTION

In a number of astrophysical objects, the magnetic fie
instead of varying at a scale comparable with the ‘‘natura
scale of the object~e.g., tens of thousands of kilometers
the case of the solar convective zone!, varies at scales tha
are orders of magnitude less than this ‘‘natural’’ scale~e.g.,
at a scale down to 100 km in the case of magnetic filame
detected in the upper part of the solar convective zone@1#,
and probably present in much deeper layers!. Therefore, the
study of the propagation of magnetohydrodynamic~MHD!
waves in plasmas with fine magnetic nonuniformities is
considerable general importance for astrophysics.

The propagation of waves with a wavelength| consider-
ably exceeding the scale lengtha of the nonuniformities is a
difficult theoretical problem~here we mean the situation i
general: not only MHD waves but also waves in objects l
bubbly liquids, polycrystals, the turbulent atmosphere, et!.
Intuitively, it is tempting to say that the average~over a scale
greater than the scale of nonuniformities! motion in the wave
remains qualitatively the same as in the uniform mediu
with the only difference that dispersion properties are n
determined by some averaged characteristics of the med
In part this is true~an acoustic wave in water with fine ga
bubbles still remains an acoustic wave, although its disp
sion may change considerably!, but identification of the
proper averaging procedure may be far from obvious. In
dition, as we show in the present paper, there may also o
a considerable modification of the modes existing in the u
form system, and the number of modes may increase.

Moreover, the presence of the fine structures may a
considerably increase the damping rate of long-wavelen
perturbations. A good exposition of the physics of enhan
dissipation can be found in the text@2#, where this problem is
considered for acoustic waves in polycrystals.

In the past, the problem of MHD waves propagating in
plasma with fine nonuniformities has been considered i
PRE 611063-651X/2000/61~3!/3069~9!/$15.00
,
’

ts

f

,

m.

r-

-
ur
i-

o
th
d

a

number of papers@3–7#. In Refs. @3,4#, the propagation of
sound waves in a plasma with thin flux tubes was conside
The distance between adjacent flux tubes was assumed
much greater than the typical flux-tube radius~‘‘small filling
factor’’!. The analysis was based on averaging of the
namic equations. In Ref.@5# a multiple scattering techniqu
was used to assess the sound propagation in a plasma
flux tubes all having the same parameters. These papers
based on the assumption of small filling factor.

In Ref. @6#, the dispersion properties of waves were stu
ied in the ‘‘densely packed’’~large filling factor! case, where
the size of the nonuniformities is comparable with the d
tance between them. To make the problem tractable, it
assumed that the relative variation of the plasma parame
is small compared to their average value. In@7#, which is the
closest predecessor of our paper, the dispersion of o
dimensional~1D! perturbations propagating across a fine
stratified magnetic field~magnetosonic waves! was studied.
We will give some further references to this paper in t
appropriate parts of our study. References@6# and @7# also
contain evaluations of the damping rate.

In this paper, we generalize the analysis of Ref.@7# to
include waves propagating at an arbitrary angle to the m
netic field. As it turns out, this generalization is far fro
trivial: in contrast to the 1D case, where a magnetoacou
wave in a finely structured medium maintains its identity a
remains basically the same magnetoacustic wave but
the phase velocity determined by the averaged paramete
the medium, in our case identification of the modes with
modes of a uniform medium~Alfvén and magnetoacoustic!
becomes impossible and, in addition, the number of eig
modes may increase. Of course, the model of a strati
medium does not fully simulate the reality of structur
fields, but it allows one to understand some features of s
systems. The problem that we solve analytically in this pa
may also become a test problem in developing compu
codes addressing more general situations.
3069 ©2000 The American Physical Society
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In Sec. II, the geometry of the problem is described a
the basic equations are derived. In Sec. III, an averag
procedure over the small scalea is introduced, and the ‘‘av-
erage’’ equations are presented. The distribution function
the plasma inhomogeneities is introduced in Sec. IV, and
possibility of getting a ‘‘new’’ root of the dispersion relatio
for MHD waves is demonstrated in Sec. V. The appeara
of a collisionless damping of the slow MHD mode of th
homogeneous case, induced by the small-scale structur
shown in Sec. VI. Some general properties of the dispers
equation for long waves in finely structured plasmas are
cussed in Sec. VII. Finally, Sec. VIII is devoted to conclu
ing remarks.

II. THE GEOMETRY OF THE SYSTEM AND THE BASIC
EQUATIONS

We assume that the unperturbed parameters of the sys
the plasma densityr0 , the plasma pressurep0 , and the mag-
netic fieldB0 , depend only on the coordinatex. The unper-
turbed magnetic field is directed along the axisz. The unper-
turbed total pressure

P0[p01
B0

2

8p
~1!

is uniform, ]P0 /]x50.
The functionsr0(x), p0(x), andB0(x) are some random

functions of their argument~subject to the constraint tha
P05const). As two independent functions one can use
functionsr0(x) andB0(x), or some functions of these var
ables. With regard to possible functional dependencies
r0(x) andB0(x), we assume that these functions vary by t
order of unity with respect to their average values, and t
their spatial dependence can be adequately characterized
single parametera having the dimension of a length; th
parameter plays the role of the characteristic scale of
nonuniformities. The characteristic values of the gas-kine
pressurer0(x) and the magnetic pressureB0

2/8p are as-
sumed to be of the same order of magnitude. This means
the local values of the sound speed

Vs5Agp0

r0
~2!

~whereg is the specific heat ratio! and the Alfvén speed

Va5A B0
2

4pr0
~3!

are also of the same order of magnitude.
We consider small perturbations of this initial state. As

is a stationary state, one can seek for the perturbations in
form exp(2ivt). For such perturbations the standard set
linearized MHD equations reads as

2v2r0j52“dp2
1

4p
B03“3dB2

1

4p
dB3“3B0 ,

~4!

dB5“3j3B0 , ~5!
d
g

f
e

e
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n
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e
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e
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dr52~j•“ !r02r0“•j, ~6!

dp

p0
2g

dr

r0
1j•S“dp

p0
2g

“dr

r0
D50, ~7!

wherej is a ~small! displacement of the fluid element wit
respect to its unperturbed position, and the other pertu
tions are marked by the symbold. As is clear from this set of
equations, we neglect all the dissipative processes.

As the system is uniform in thez direction, one can pos
tulate an harmonic dependence of all the quantities on
coordinate. Accordingly, we assume that thez dependence of
the perturbations has the form exp(iqz), with realq. Note that
we assume that there is noy dependence of the perturbation

For this type of perturbation, they component of the dis-
placement does not enter Eqs.~6! and~7!. As for they com-
ponents of Eqs.~4! and ~5!, they reduce to

2v2r0jy5
iqB0

4p
dBy , ~8!

dBy5 iqB0jy . ~9!

One sees that perturbations with this polarization are s
from the perturbations withjy50. Equations~8! and~9! de-
scribe the shear Alfve´n waves propagating along thez axis.
The dispersion relation for this mode is

v25
q2B0

2

4pr0
. ~10!

As the Alfvén velocity, generally speaking, depends onx,
Eq. ~10! describes the so-called Alfve´n continuum~see, e.g.,
Ref. @8#!. We will not discuss this mode in our paper. W
just recall that the presence of such solutions is a con
quence of the fact that shear Alfve´n waves have a zero grou
velocity across the magnetic field and, accordingly, th
waves in separate layers propagate absolutely independ
of each other.

Consider now equations where thex andz components of
the displacement and of the perturbation of the magn
field are present. After some algebra, these equations ca
reduced to two equations forjx and for the total pressure
perturbationdP,

dP5dp1
B0dBz

4p
. ~11!

These equations read

S v2r02
q2B0

2

4p D jx5
]dP

]x
, ~12!

]jx

]x
52dPS B0

2

4p
1

gp0

12q2gp0 /v2r0
D 21

. ~13!

These are our basic equations that we will analyze in Sec.
For the sake of reference, we present here the expressio
the other perturbations in terms ofjx :

dBx5 iqB0jx , ~14!
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dBz52
]

]x
~jxB0!, ~15!

jz5
iqgp0

gp0q22r0v2

]jx

]x
, ~16!

dp52jx

dp0

]x
1

gp0r0v2

gp0q22r0v2

]jx

]x
, ~17!

dr52jx

]r0

]x
1

r0
2v2

gp0q22r0v2

]jx

]x
. ~18!

III. THE AVERAGED EQUATIONS

Equations~12!–~18! are, so far, exact equations. At th
point we switch to the investigation of a particular class
the perturbations they describe, namely, perturbations wi
scale length| much greater than the scale lengtha of mi-
crononuniformities,

|@a. ~19!

One can create such a perturbation by a very slow motio
the boundary of the plasma, with a frequency much less t
the characteristic acoustic frequency of each slab,

v!Vs /a. ~20!

Alternatively, one can produce an initial perturbation by a
plying a smoothly varying (|@a) external force, and then
removing it and allowing the system to evolve freely. Ob
ously, the perturbation of the total pressure in every slab t
remains almost uniform, as the perturbations under consi
ation represent slow quasistatic modes. Therefore, we
clude that the spatial dependence of the perturbation of
total pressure is a smooth function ofx @see Fig. 1~a!#.

In contrast, the perturbations of the gas-kinetic press
and of the magnetic pressure, taken separately, can be
siderable@Fig. 1~b!#, because of the different compressibi
ties of the gas and the magnetic field. Also sharply vary
will be jz and the density perturbations. All these quantit
adjust their variation in such a way as to keep the variat
of the total pressure smooth.

The other perturbation that must be a smooth function
x is jx . Indeed, ifjx varied by the order of unity at the sca
a, then its spatial derivative entering Eq.~13! would be
;jx /a, the perturbation of the total pressure, according
Eq. ~13!, would be;P0jx /a, and the right-hand side~rhs!
of Eq. ~12! would be formally much greater than the lhs,
that Eq.~12! could not be satisfied. Therefore, we conclu
that jx is also a smooth function ofx.

To be more precise, one should say that, in the case o
functions jx and dP, in addition to the smoothly varying
component there are also jiggles, but their amplitude is m
times less than the amplitude of the smoothly varying co
ponent@Fig. 1~a!#:

jx5^jx&1 j̃x , ~21!

dP5^dP&1d P̃, ~22!
f
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j̃x;^jx&
a

|
, d P̃;^dP&

a

|
. ~23!

The averaging is carried out over a lengthl that is interme-
diate betweena and|,

a! l !l, ~24!

and is defined as

^ f ~x!&5
1

l Ex2 l /2

x1 l /2

f ~x8!dx8. ~25!

In particular,

K ]dP

]x L 5
1

l
@^dP~x1 l /2!&2^dP~x2 l /2!&#

1
1

l
@d P̃~x1 l /2!2d P̃~x2 l /2!#

5
]^]P&

]x
1OS a

l D'
]^dP&

]x
. ~26!

The same result pertains to the averaging of]jx /]x. Note
also that the functions]jx /]x and]dP/]x themselves~be-
fore averaging! are jittery functions@Fig. 1~c!#. This is im-
mediately clear from Eqs.~12! and~13!: these derivatives are
products of smoothly varying functions and jittery functio
and, therefore, are jittery.

FIG. 1. Smoothly and sharply varying perturbations.
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Taking into account all these considerations, one can
erage Eqs.~12! and~13!. Replacing@by virtue of Eqs.~21!–
~23!# jx in the lhs of Eq.~12! by ^jx&, anddP in the rhs of
Eq. ~13! by ^dP&, one finds

S v2^r0&2q2K B0
2

4pL D ^jx&5
]^dP&

]x
, ~27!

]^jx&
]x

52^dP&K ~v2/q2!2vs
2

r0@~v2/q2!~va
21vs

2!2va
2vs

2#L . ~28!

Since the coefficients in these equations do not depen
x, one can look for a solution of the type exp(ikx) with realk.
k plays the role of thex component of the wave number o
the averaged perturbations. By introducing also the ph
velocity of this perturbation,

v25
v2

k21q2 . ~29!

and the angleq formed by the total wave number with th
axis z,

cos2 q5
q2

k21q2 , ~30!

one finds the following dispersion relation that allows one
expressv in terms ofq:

S v22cos2 q
^r0va

2&

^r0&
D K ^r0&~v22vs

2 cos2 q!

r0@v2~va
21vs

2!2cos2 qva
2vs

2#L
5sin2 q. ~31!

In the case of a uniform plasma, one can delete the a
aging signs and, in this way, arrive at the familiar dispers
relation describing fast and slow magnetosonic waves:

v42v2~va
21vs

2!1cos2 qva
2vs

250. ~32!

The other limiting case known from previous analyses@7#
is that ofq5p/2 ~strictly perpendicular propagation!. In this
case, our dispersion relation is reduced to that of Ref.@7#:

v25
1

^r0&
K 1

r0~va
21vs

2!L 21

. ~33!

In other words, in the case of cross-field propagation,
magnetoacoustic wave remains a magnetoacoustic wave
with properly averaged phase velocity, but no new mo
appear. In the more general case of the dispersion rela
~31!, as we will shortly show, the situation is much riche
the number of modes, generally speaking, increases, an
some cases a collisionless damping appears.

IV. THE DISTRIBUTION FUNCTION OF THE PLASMA
NONUNIFORMITIES

Within the framework of the MHD approximation, th
unperturbed state is characterized by three variables,p0 , r0 ,
and B0 . As there is the constraintP05const, only two of
v-

on

se

r-
n

e
ust
s
on

in

them are independent. In order to characterize uniquely
initial state one can, therefore, use two of the aforementio
variables, or two functions of these variables. We will ch
acterize the initial state by the values of the sound speed@Eq.
~2!# and the Alfvén velocity @Eq. ~3!#. Then, for instance, the
density in the unperturbed state can be presented as

r05
P0

va
2/21vs

2/g
. ~34!

It is convenient to characterize the distribution of the no
uniformities of the unperturbed parametersva

2 andvs
2 by the

distribution functionF(va
2,vs

2) ~cf. @3#! defined as follows:

da5F~va
2,vs

2!dva
2dvs

2, ~35!

whereda is the fraction of space occupied by the plasm
whose parametersva

2 and vs
2 lie in the rangedva

2dvs
2. The

normalization of the distribution function is obvious:

E F~va
2,vs

2!dva
2dvs

251. ~36!

Negative values of the parametersva
2 andvs

2 are unphysi-
cal. Therefore distributions of the Gaussian type, wh
would extend to the negative values of these parameters
obviously unphysical too. The functionF should be nonzero
only in one quadrant of theva

2,vs
2 space. We will make an

even stronger assumption thatF is nonzero only in some
range of the parametersva

2 andvs
2 limited from both below

and above.
The average@see Eq.~25!# of any functionf (va

2,vs
2) can

be conveniently expressed in terms of averaging over
distribution functionF:

^ f ~va
2,vs

2!&5E f ~va
2,vs

2!F~va
2,vs

2!dva
2dvs

2. ~37!

For example, for the average density one has

^r0&5P0E F~va
2,vs

2!

va
2/21vs

2/g
dva

2dvs
2. ~38!

This allows one to express the dispersion relation in Eq.~31!
in terms of averages over the distribution functionF. We will
not write this lengthy expression here.

Further simplifications occur in the case where the unp
turbed temperature is uniform~this is an interesting case be
cause the thermal diffusivity is usually much higher than
magnetic diffusivity and may quickly establish a unifor
temperature over small scales!. What is important to us is
that, at a constant temperature,vs

2 is constant, too, and the
initial state is uniquely characterized by a single variableva

2.
Accordingly, we need the distribution function only over on
parameter,va

2. In this case the dispersion relation of Eq.~31!
reads
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S v22cos2 q
^r0va

2&

^r0&
D ~v22vs

2 cos2 q!

3K ^r0&
r0@v2~va

21vs
2!2cos2 qva

2vs
2#L 5sin2 q, ~39!

where

^r0&5P0E F~va
2!

va
2/21vs

2/g
dva

2, ~40!

^r0va
2&5P0E va

2F~va
2!

va
2/21vs

2/g
dva

2, ~41!

K 1

r0@v2~va
21vs

2!2cos2 qva
2vs

2#L
5

1

P0
E ~va

2/21vs
2/g!F~va

2!dva
2

@v2~va
21vs

2!2cos2 qva
2vs

2#
. ~42!

The possible presence of zeros in the denominator of
integral in Eq.~42! requires a proper treatment of this int
gral in the spirit of the usual treatment of Landau resonan
@9#. That is, we first note that the integral in Eq.~42!, if taken
along the real axis ofva

2, is an analytical function at Imv
.0; this is the function that enters the inverse Laplace tra
form ~with p5Im v) @9#. For negative values of Imv, this
function should be defined as an analytical continuation
the integral initially introduced. The role of the imagina
part of the rhs of Eq.~42! will be discussed in Secs. VI an
VII.

V. NEW ROOTS OF THE DISPERSION EQUATION
APPEAR

We will first analyze the dispersion Eq.~39! for a two-
step distribution function, where the relevant parameter m
acquire only two values,va1

2 andva2
2 , randomly distributed

over the space~see Fig. 2!. The distribution function in this
case is

F~va
2!5a1d~va

22va1
2 !1a2d~va

22va2
2 !, ~43!

wherea1(a2) is the fraction of the space occupied by t
first ~the second! value of the parameterva

2, and

a11a251. ~44!

In this case the dispersion relation takes the form

~v2^r0&2cos2 q^r0va
2&!~v22vs

2 cos2 q!

3F a1~va1
2 /21vs

2/g!

@v2~va1
2 1vs

2!2cos2 qva1
2 vs

2#

1
a2~va2

2 1vs
2/g!

@v2~va2
2 1vs

2!2cos2 qva2
2 vs

2#
G5P0 sin2 q.

~45!

It is convenient to rewrite Eq.~45! in terms of the following
dimensionless variables:
e

s

s-

f

y

u25
v2

vs
2 cos2 q

, ua1,2
2 5

va1,2
2

vs
2 . ~46!

It then becomes

G~u![~Au22B!~u221!F a1~ua1
2 /211/g!

@u2~ua1
2 11!2ua1

2 #

1
a2~ua2

2 /211/g!

@u2~ua2
2 11!2ua2

2 #
G

5tan2 q, ~47!

where

A5 (
i 51,2

a i

uai
2 /211/g

, B5 (
i 51,2

a iuai
2

uai
2 /211/g

. ~48!

Before considering in more detail the case of two su
stances, we briefly discuss the reference case of a unif
medium, wherea151 anda250. In this case the functionG
is reduced to a simpler functionH that has the form

H~u2![
~u22ua

2!~u221!

u2~11ua
2!2ua

2 . ~49!

A sketch of the functionH(u2) is shown in Fig. 3 forn
5n1533108 cm23, T5100 eV, B5B1510 G, ua

25ua1
2

'100, andb5b1'0.01. The intersection of the plot of th
functionH(u2) with the horizontal lineH(u2)5tan2 q gives
the values of the parallel phase velocity. The smaller of
roots

ua
2

11ua
2 ,u2,min~1,ua

2! ~50!

FIG. 2. Illustration of the two-value random functionva
2(x).

The fraction of space ‘‘occupied’’ by the valueva1
2 is a1 , the

fraction of space occupied byva2
2 is a2 , anda11a251.
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corresponds to the slow magnetoacoustic mode~see, for ex-
ample, Ref.@10#!. Its characteristic feature is that, in the lim
q→p/2, its parallel phase velocity becomes constant a
tends to the value

u25
ua

2

11ua
2 . ~51!

The larger of the roots

u2.max~1,ua
2! ~52!

corresponds to the fast magnetoacoustic mode@10#.
Consider now the case of two substances. Equation~47! is

a third-order equation inu2 @not a second-order equation a
was the case in a uniform plasma; see Eq.~32!#. This points
out the possible presence of an additional mode. One
show that, indeed, this equation universally has three s
tions with positive~and thus physically meaningful! values
of u2 ~unless we consider the degenerate case withua1

2

5ua2
2 , which corresponds to the single-component syste!.

Moreover, two asymptotes occur at

u25
ua1~2!

2

11ua1~2!
2 . ~53!

The presence of the three roots is a direct consequence o
presence of the second component in the system.

For parallel propagation, i.e., forq50, the three roots are
u251, u25B/A, andu25unew

2 , where the ‘‘new’’ mode has
the following dispersion:

FIG. 3. The functionH(u2) defined in Eq.~49! is plotted vsu2,
for n5n1533108 cm23, T5100 eV, B5B1510 G, ua

25ua1
2

'100, andb5b1'0.01. Its intersection with the horizontal lin
H(u2)5tan2 q gives the two solutions of the dispersion Eq.~47! in
the case of a uniform plasma. Notice that the fast magnetoaco
root is situated at highu2 values which are outside the range d
played in the figure.
d

an
u-

the

unew
2 5

ua1
2 ua2

2

2
1

a1ua2
2

g
1

a2ua1
2

g

ua1
2 ua2

2

2
1

1

g
1a1S ua2

2

g
1

ua1
2

2 D 1a2S ua1
2

g
1

ua2
2

2 D .

~54!

As a specific example, let us consider the two sets of par
eters, shown in Table I, characterizing the twophasesof the
finely structured plasma under consideration. The total p
sureP @see Eq.~1!# and the temperatureT are assumed con
stant throughout the medium.

Three cases are now considered, depending on the rel
concentration of the two phases of the plasma:a15a2
50.5 @case~a!#; a150.1,a250.9 ~b!; a150.9,a250.1 ~c!.
In all cases,g5 5

3 has been considered. In Fig. 4 the functi
G(u2) is plotted for the three cases~a!, ~b!, and~c!. Again,
the intersection with the horizontal line tan2 q gives the three
roots. The fast mode, modified by the presence of small-s
inhomogeneity, is the larger root of the dispersion, i.
max(1,B/A). The smaller ofu251 andu25B/A represents
the modified slow magnetoacoustic mode. The rootu2

5unew
2 is the new mode that can propagate inside the plas

due to its composite structure. Figure 5 shows the three r
of the dispersion Eq.~47! versus the propagation angleq ~in
units of p!, for the three cases~a!, ~b!, and~c!.

Both the two smaller roots have the characteristic sig
ture of slow magnetoacoustic waves: a constant para
phase velocity forq→p/2. One can say that now there a
two slow magnetoacoustic modes, instead of one as in
case of a uniform plasma. There exists also a fast mode,
phase velocity exceeding max(1,B/A).

Notice that in the two opposite limiting casesa2→0 and
a1→0 the new root disappears, since the uniform plas
case should be recovered. In the former caseunew merges
into the larger asymptote. In the latter caseunew merges into
the lower asymptote. In both limits,unew becomes indepen
dent ofq.

VI. COLLISIONLESS DAMPING OF THE SLOW
MAGNETOACOUSTIC MODE

A second relevant example that allows a simple solut
is that of an almost uniform medium, with nonuniformitie
occupying only a small fractione of the volume. In other
words, we assume that the distribution functionF(va

2) has
the form

tic

TABLE I. Parameters for the two phases of a finely structur
plasma.

Phasea51 Phasea52

na ~cm23! 2.331010 33108

Ta ~eV! 100 100
Ba ~G! 3 10

uaa
2 '0.1 '100

ba '10 '0.01
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F~va
2!5~12e!d~va

22va0
2 !1e f ~va

2!, ~55!

where the functionf (va
2) describes the presence of nonun

formities and is assumed to be normalized to the un

FIG. 4. The functionG(u2) defined in Eq.~47! is plotted vsu2,
for three different values of the relative concentrations of the t
phases of the plasma:a15a250.5 ~a!; a150.1, a250.9 ~b!; a1

50.9,a250.1 ~c!. The other parameter values are those of Tabl
:

o

I.

FIG. 5. The three roots of Eq.~47! are plotted as a function o
the propagation angleq ~in units ofp!, for the same cases as in Fig
4: a15a250.5 ~a!; a150.1, a250.9 ~b!; a150.9, a250.1 ~c!.
The ‘‘new’’ slow mode is plotted with a thicker line.
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* f (va
2)dva

251. When one substitutes the distribution fun
tion of Eq. ~55! into the general Eq.~39!, one finds the fol-
lowing dispersion relation pertaining to the case under c
sideration:

~Au22B!~u221!F ~12e!~ua0
2 /211/g!

u2~ua0
2 11!2ua0

2

1eE f ~ua
2!~ua

2/211/g!dua
2

u2~ua
211!2ua

2 G5tan2 q. ~56!

Here, as in Eqs.~46! and ~47!, all the variables are normal
ized to the sound speed@Eq. ~2!#. Moreover, we recall tha
we are considering the constant temperature case so
sound speed does not vary in thex direction.

The terms of the order of« bring about two modifications
to the solution of the uniform plasma case («50): first, the
real part of the frequency experiences a small shift prop
tional to«; second, if there exists a range of phase veloci
corresponding to the zeros of the denominator of the Lan
integral in Eq.~56!, there appears also an imaginary corre
tion to the frequency. The first modification is of little inte
est and we do not consider it. The second modification in
duces a qualitatively new element to the system
collisionless damping. Accordingly, in what follows, we
retain only one term of the order« in Eq. ~56!: the imaginary
part of the Landau integral. In other words, we neglect
terms of order« in A, B, and in the first term in the squar
bracket of Eq.~56!, and arrive at the following approximat
dispersion relation:

H~u2!1 i«n>tan2 q, ~57!

where the functionH is defined according to Eq.~49!, with
ua0

2 replacingua
2, and

n[
u22ua0

2

1/g1ua0
2 /2

Im E
C

1/g1ua
2/2

ua
22u2/~12u2!

f ~ua
2!dua

2. ~58!

To be specific, consider a wave withkz and Rev positive. In
this case, for positive Imv, one has Imu2.0. This deter-
mines the rule for treating the Landau integral in Eq.~58!.
The integration contour in the complex plane ofua

2 should lie
below the pole of the integrand. As, at small«, the imaginary
part ofu2 is small, one has~taking account of the integratio
rule just mentioned!

Im E
C

1/g1ua
2/2

ua
22u2/~12u2!

f ~ua
2!dua

2

5pE f ~ua
2!S 1

g
1

ua
2

2 D dS ua
22

u2

12u2Ddua
2. ~59!

The last integration is carried out along the real axis ofua
2.

The rhs of Eq.~59! is non-negative. It can be different from
zero only foru2,1 ~otherwise, the argument of thed func-
tion cannot become zero!.

The presence of a small imaginary term in Eq.~57! gives
rise to the appearance of a small imaginary part inu that can
be found from the relationship

2u Im u
]H~u2!

]u2 52«n, ~60!
-

the

r-
s
u

-

-

e

whereu should be determined from the solution of the u
perturbed dispersion relationH(u2)5tan2 q.

The fast magnetoacoustic wave remains undamped,
cause its parallel phase velocity is always greater than 1@see
Eq. ~52!#. Consider, therefore, the damping of slow magn
toacoustic waves. That this is a damping, not a growth,
easily be seen from inspection of the plot ofH(u2) in Fig. 3,
and the notion that, for slow modes, the parallel phase
locity is always belowua @see Eq.~50!#.

According to what has been said in Sec. IV, conside
distribution function that is different from zero in a finit
interval, ua,min,ua,ua,max. The damping of a slow wave
with a certain phase velocityu occurs if u falls into the
interval determined by the inequality

ua,min
2

11ua,min
2 ,u2,

ua,max
2

11ua,max
2 ,1. ~61!

As an example we have considered the following parab
distribution function of the plasma nonuniformities:

f ~ua
2!5

6~ua,max
2 2ua

2!~ua
22ua,min

2 !

~ua,max
2 2ua,min

2 !
H~ua,max

2 2ua
2!

3H~ua
22ua,min

2 !, ~62!

where the two Heaviside functions limit its definition to th
finite interval ua,min

2 ,ua
2,ua,max

2 . The distribution is normal-
ized to unity. In Fig. 6~a! the dispersion relationu2 versus
the angleq ~in units ofp! is plotted for the case of the mai
plasma with parameters of the ‘‘phase 2’’ plasma~low b! of
Sec. V. The range of existence of the distribution function
ua,min

2 560, ua,max
2 5200. The fraction of the volume occu

pied by the nonuniformities is«50.1. According to Eq.~61!
the imaginary part ofu2 exists in the range 0.983,u2

,0.995, as shown in Fig. 6~b!, where Imu2 is plotted vsu2.
Then the phase velocities which are affected by the collisi
less damping lie below the dashed line in Fig. 6~a!. It is seen
that the collisionless damping of the slow mode becom
effective for propagation sufficiently oblique to the directio
of the external magnetic field~the z axis!. It is consistent
with the nature of damping that lies in the resonant inter
tion between the external waves and slow perturbati
propagating in the plasma layers~along the magnetic field!
with a properua . This damping mechanism is the same
that discussed in Ref.@4# ~see also the survey@11#!.

VII. GENERAL PROPERTIES OF THE DISPERSION
RELATION „39…

In this section we consider the general dispersion
~39!. When written in dimensionless quantitiesu2 and ua

2

defined as in Eq.~46!, this dispersion relation reads

~Au22B!~u221!E
C

~ua
2/211/g!F~ua

2!dua
2

u2~ua
211!2ua

2 5tan2 q.

~63!

The distribution function is normalized to 1. As before, w
assume thatF differs from zero only within a finite interva
of ua

2.
Equation ~63! possesses an interesting property: it p

dicts the presence of undamped fast magnetoacoustic m
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with phase velocities satisfying the conditionu2

.max(1,B/A). The parallel phase velocity of the fast mag
netoacoustic mode is greater than the zero of the denomi
tor of the integrand in Eq.~63!—whence the absence of
damping. A simple asymptotic solution of Eq.~63! exists for
q'p/2. In this case the parallel phase velocity of the fa
mode is very large, and Eq.~63! reduces to

u2E F~ua
2!dua

2

ua
2/211/g

E ~ua
2/211/g!F~ua

2!dua
2

ua
211

5tan2 q.

~64!

FIG. 6. The root of Eq.~49! corresponding to the slow mode in
a uniform plasma is plotted vsq ~a!. The relevant imaginary part, of
collisionless origin, is plotted vsu2 ~b!, for ua,min

2 560, ua,max
2

5200, as discussed in Sec. VI.
a-

t

The slow magnetoacoustic mode, generally speaking, e
riences a significant damping, with Imu'Reu.

VIII. SUMMARY AND DISCUSSION

We have developed a general formalism that allows o
to treat the propagation of large-scale MHD waves in a fin
stratified medium. We have obtained equations that al
one to gain some insight into the wave properties of a plas
with a large filling factor, where nonuniformities are tight
packed to each other.

On the one hand, our equations predict the occurrenc
new roots in addition to those of the uniform plasma ca
For the particular plasma nonuniformity distribution cons
ered here@corresponding to a two-phase plasma; see
~43!#, a new slow wave exists in addition to the standa
slow and fast magnetoacoustic modes. The more com
cated, although more realistic, situation of a continuou
varying Alfvén velocity inside the plasma, generally spea
ing, involves zeros of trascendental functions which m
give rise to multiple solutions; it will be the matter of futur
investigation.

On the other hand, it has been demonstrated that in
latter case, for a small degree of nonuniformity, the stand
slow mode, generally speaking, experiences collisionl
damping: the wave energy is converted into energy of
peristaltic modes of the resonant layers, i.e., the layers wh
the phase velocity of the peristaltic modes coincides with
parallel phase velocity of the wave. Generally speaking,
damping of the slow mode is strong, with the imaginary a
real parts of the frequency being of the same order of m
nitude. A transparency window for slow modes may
present in the system if the range of Alfve´n velocities where
the distribution function is different from zero does not e
tirely overlap with the range of phase velocities of the slo
mode.

The fast mode is universally undamped, as its para
phase velocity is always above the phase velocity of the p
staltic modes.

ACKNOWLEDGMENT

One of the authors~D.R.! is grateful to the Institute of
Plasma Physics ‘‘Piero Caldirola,’’ Consiglio Naziona
delle Ricerche~Milan! for its hospitality during the years
1992 and 1997.
@1# T. Tajima and K. Shibata,Plasma Astrophysics~Addison-
Wesley, Reading, MA, 1997!, p. 154.

@2# L. D. Landau and E. M. Lifshitz,Theory of Elasticity~Perga-
mon, Oxford, 1975!.

@3# D. D. Ryutov and M. P. Ryutova, Zh. Eksp. Teor. Fiz.70, 943
~1976! @Sov. Phys. JETP43, 491 ~1976!#.

@4# M. Ryutova and E. R. Priest, Astrophys. J.419, 349 ~1993!.
@5# T. J. Bogdan and E. G. Zweibel, Astrophys. J.312, 444

~1987!.
@6# M. Ryutova and M. Persson, Phys. Scr.29, 353 ~1984!.
@7# B. J. LaBonte and M. Ryutova, Astrophys. J.419, 388~1993!.
@8# R. Cross,An Introduction to Alfve´n Waves~Hilger, Bristol,

1988!.
@9# N. A. Krall and A. W. Trivelpiece,Principles of Plasma Phys-

ics ~McGraw-Hill, New York, 1973!.
@10# J. P. Friedberg,Ideal Magnetohydrodynamics~Plenum, New

York, 1987!.
@11# A. V. Timofeev, inReviews of Plasma Physics, edited by B. B.

Kadomtsev~Consultants Bureau, New York, 1991!, Vol. 17.


